
Python For Loops

Python For Loops
A for loop is used for iterating over a sequence (that is either a list, a tuple, a
dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works
more like an iterator method as found in other object-orientated programming
languages.

With the for loop we can execute a set of statements, once for each item in a
list, tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

The for loop does not require an indexing variable to set beforehand.

Looping Through a String
Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":



for x in "banana":

print(x)

The break Statement
With the break statement we can stop the loop before it has looped through all
the items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

if x == "banana":

break

Example

Exit the loop when x is "banana", but this time the break comes before the
print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

if x == "banana":

break

print(x)



The continue Statement
With the continue statement we can stop the current iteration of the loop, and
continue with the next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

if x == "banana":

continue

print(x)

The range() Function
To loop through a set of code a specified number of times, we can use the
range() function,

The range() function returns a sequence of numbers, starting from 0 by
default, and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.



The range() function defaults to 0 as a starting value, however it is possible to
specify the starting value by adding a parameter: range(2, 6), which means
values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for x in range(2, 6):

print(x)

The range() function defaults to increment the sequence by 1, however it is
possible to specify the increment value by adding a third parameter: range(2,
30, 3):

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

print(x)

Else in For Loop
The else keyword in a for loop specifies a block of code to be executed when
the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

print(x)

else:



print("Finally finished!")

Note: The else block will NOT be executed if the loop is stopped by a break

statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):

if x == 3: break

print(x)

else:

print("Finally finished!")

Nested Loops
A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

for y in fruits:



print(x, y)

The pass Statement
for loops cannot be empty, but if you for some reason have a for loop with no
content, put in the pass statement to avoid getting an error.

Example

for x in [0, 1, 2]:

pass


